Cationic Peptide Exposure Enhances Pulsed-Electric-Field-Mediated Membrane Disruption
نویسندگان
چکیده
BACKGROUND The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. METHODOLOGY/PRINCIPAL FINDINGS We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. CONCLUSIONS/SIGNIFICANCE Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired.
منابع مشابه
Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.
We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell s...
متن کاملPulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electri...
متن کاملActivation of autophagy in response to nanosecond pulsed electric field exposure.
Previous work demonstrated significant changes in cellular membranes following exposure of cells to nanosecond pulsed electric fields (nsPEF), including nanoporation and increases in intracellular calcium concentration. While it is known that nsPEF exposure can cause cell death, how cells repair and survive nsPEF-induced cellular damage is not well understood. In this paper, we investigated whe...
متن کاملDesign and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results
Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicates that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coil is a device that generates pulsed electromagnetic fields. Objective: In this study, a pair of Helmholtz coils for enhancing thehealing process in periodontitis w...
متن کاملThe Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications
Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combinatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014